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ABSTRACT

Relationships between polymer conformation, viscometric behaviour and
concentration are observed and evaluated through a series of non-equilibrium
molecular dynamics simulations of the behaviour of 20-site polymers in solution
with explicit solvent across the full concentration range.

The zero-shear viscosities, first normal stress coefficients and steady-state
shear compliance of the solutions are examined alongside conformational prop-
erties including the mean squared radius of gyration and the excluded volume
effect.

These short chain polymers are observed to remain in an effectively dilute
solution up to relatively high concentrations, before exhibiting both hydrody-
namic and static screening. While the theories of Rouse and Zimm accurately
describe the melt and dilute behaviours of this system, respectively, it is found
that conformational data are not well described by the mean field or scaling
theories.

KEY WORDS: bead rod model polymer; non-equilibrium molecular dynamics;
polymer solution; shear flow; viscosity.
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1 INTRODUCTION

This study examines the viscometric properties of short polymer chains in so-
lution through a series of non-equilibrium molecular dynamics (NEMD) simu-
lations. The viscometric and conformational properties of short-chain polymer
solutions are of importance to a range of polymer science applications, including
lubrication technology.

Simulation-based analyses of viscometric properties have been previously un-
dertaken using a system containing a single polymer molecule, where “concentra-
tion” throughout the periodic system is determined according to the number of
solvent molecules in the periodic box [1, 2, 3]. In this study, NEMD simulations
are completed on systems of 100 to 500 chain molecules. The polymer molecules
themselves have polymerisation degree N = 20, and are suspended in a solvent of
single-site molecules, so that polymer concentration can be modified by altering
the percentage of sites within the simulation box which are constrained to form
chains. This system can be regarded as a simple model for any solution where
the solvent consists of roughly spherical molecules which are approximately the
same mass as the monomer units of the polymers suspended in them, provided
that all molecules are non-polar and without specific interactions such as hydro-
gen bonding or charge interactions. For example, this system can be usefully re-
garded as representing a range of specific systems such as eicosane (C20H42) dis-
solved in methane (CH4), polystyrene ((CH2CHC6H5)20) dissolved in styrene
(CH2CHC6H5) or PDMS ((CH3)3SiO((CH3)2SiO)20(CH3)2SiOH) dissolved
in TMS ((CH3)4Si), where each of these systems consist of polymer molecules
constructed from 20 vaguely spherical units each, suspended in a solvent com-
prised of molecules very similar to the monomer unit of each polymer.

Since our simulations are performed at a range of very low homogeneous
shear rates, the zero-shear-rate viscosity, η, can be easily identified for each
concentration. Charting the changes in η as polymer concentration increases
allows us to test the theories of chain behaviour.

The current authors are unaware of any other computational or experimental
study which examines viscometric and conformational behaviour over the entire
concentration range. The fragmentary nature of many experimental studies
of viscosity and concentration mirrors the disjointedness of the relevant theory.
Separate relations exist to describe viscosity behaviour in the dilute, semi-dilute
and concentrated regimes. The aim of the current study is to examine the
relationships between viscosity, conformation and concentration exhibited by a
short-chain polymer solution, with reference to some of the various theoretical
models available.

2 MOLECULAR MODEL AND SIMULATION TECHNIQUE

The simulation technique used to achieve the results contained herein has been
reported previously [4]. Briefly, we use a non-equilibrium molecular dynamics
(NEMD) code (described by Matin, Daivis and Todd [5]) which explicitly ap-
plies the molecular version of the SLLOD equations of motion to all particles
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in the system, including those comprising the solvent and solves these equa-
tions at each time-step by a fourth order Gear predictor-corrector scheme. The
solvent molecules are modeled as Lennard-Jones (LJ) spherical particles, while
the polymer molecules are made up of 20-site chains of identical spheres. These
chains are simulated according to a bead-rod model with truncated and shifted
LJ (LJ) interactions between all beads (‘sites’) except those which are bonded
to each other within a molecule. The LJ potential describing all interactions
in the system is truncated and shifted so that potential has no discontinuity
and is zero beyond a cutoff distance rc = 21/6σ (where σ is the distance at
which the unshifted potential is zero). An LJ potential with this truncation
point is often known as the WCA potential [6], and it results in purely repulsive
interactions. This potential is convenient for computational work because it is
short-ranged, and therefore computationally undemanding, but still retains the
essential physics, i.e. the repulsive (excluded volume) interaction.

The molecular centre of mass temperature for the polymer chains (defined
as proportional to the square of the centre of mass momentum of each chain
divided by its molecular mass, per number of number of translational centre of
mass degrees of freedom available to the molecules) is kept constant through
the inclusion of a thermostatting term derived from Gauss’ principle of least
constraint. This algorithm, including the details of the constraint algorithm,
has been discussed previously [7, 8, 9] and we refer the reader to previous work
[10, 11, 12, 13] on the subtle but important issues involved in the application of
homogeneous thermostats to flowing molecular fluids.

Bulk behaviour of this system simulated via periodic boundary conditions
(PBCs) and the minimum image convention, which prescribes that the primary
simulation box must be large enough so that each particle interacts only with the
closest image of another particle [14]. Here, to allow for the homogeneous shear
flow introduced to the system via the equations of motion, we apply Lagrangian
rhomboid periodic boundary conditions, where periodic images are deformed in
the x direction by an amount dependent on their location in the y direction.
These effects result in a velocity gradient in the y-direction which, when the fluid
state is at equilibrium and the flow rate is not too great [15], is equivalent to
planar shear flow γ̇ = ∂vx

∂y
. This method is periodic in space and time, allowing

shear flow of an infinite bulk system to be simulated over very many time-steps.
The viscometric functions under consideration in this study are defined in

terms of components of the pressure tensor P. The pressure tensor for the
atomic fluid (single interaction site molecules) was calculated using the atomic
pressure tensor, given by

PAV =

〈
Na∑

i=1

pipi
Mi
−

1

2

Na∑

i=1

Na∑

j 6=i

rijFij

〉

, (1)

while for the polymer solutions, it was calculated using the expression

PMV =

〈
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, (2)
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where pi represents the total peculiar momentum of molecule i, as defined by
the equations of motion, and Finteriαjβ represents the intermolecular force on site
iα due to site jβ. This means that the first term in each equation represents
the kinetic component while the second describes the potential component of
the pressure tensor.

For simple shear flow, ηs and Ψ1 are useful material functions for representing
and relating independent components of the stress tensor. ηs is the generalized
non-Newtonian shear viscosity of a fluid subject to strain rate γ̇ and is defined
by:

ηs = −
Pxy + Pyx

2γ̇
. (3)

Ψ1 is the first normal stress coefficient, given by the first two diagonal compo-
nents of P,

Ψ1 =
Pyy − Pxx

γ̇2
=
N1

γ̇2
. (4)

It is calculated from the first normal stress difference, N1, which results directly
from restoring forces acting in opposition to any flow-induced anisotropy in the
fluid.

Steady-state values of ηs and Ψ1 are linked by

Ψ1,0 = 2η2J0
e . (5)

where J0
e is the steady-state shear compliance of the fluid, which can also be cal-

culated from η the steady-state viscosity of the solution, η0 the solvent viscosity,
S2/S

2
1 the relaxation-time ratio and n1 the polymer concentration, according to

[16]

J0
e =

(
M

n1RT

)
(η − η0)

2

η2

S2

S2
1

(6)

where R is the gas constant, M is the polymer molar mass and T is absolute
temperature. This general relationship for polymer solutions can be applied to
dilute solutions, where according to Zimm theory S2/S

2
1 = 0.206. Alternately,

in the high concentration limit, Rouse theory predicts that S2/S
2
1 = 0.400.

These relationships have been shown to apply to simulations of a very short
polymer chains, like those used here. For example, Matin [14] has shown that
polymers with length N = 20 in a melt are flexible enough to exhibit a length-
dependent viscosity consistent with Rouse theory. Furthermore, the applica-
bility of the Zimm model to dilute solutions of short-chain polymers has been
demonstrated by Dunweg and Kremer [17], down to N = 30. We are there-
fore confident that our short chains are accurately simulating real polymers,
and that these theoretical relationships derived from polymer rheology should
predict their behaviour.

3 RESULTS AND DISCUSSION

In the remainder of this paper, we express all quantities in terms of site reduced
units for which the reduction parameters are the Lennard-Jones interaction
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parameters ε and σ and the mass miα of site α on molecule i. These values
are defined in terms of reduced temperature T ∗ = kBT

ε
= 1.0, reduced density

ρ∗ = ρσ3 = 0.84 and the mass of each site m∗ = miα = 1.0, while time is
scaled by t∗ = σm

1
2 ε−

1
2 . For easy comparison of reduced and real quantities,

relevant values for these variables are summarised in Table 1. The conversion
to real units was completed by assuming that all sites in the solution could be
regarded as modeling CH4. Under this assumption, the system can be seen as
representing a solution similar to eicosane dissolved in methane. The reliability
of these straightforward conversions is limited by the fact that repeat unit of
eicosane is CH2 rather than CH4, but the resulting values are useful in giving a
general impression of the magnitudes of the parameters used in the simulation.
The asterisk denoting reduced quantities will be dropped from here on.

Table 1: Values of simulation parameters and other quantities in real and re-
duced units. The approximate conversion to real units assumes that all sites are
CH4, with mCH4 = 2.66× 10−26kg, σ = 3.817× 10−10m, ε = 2.0433× 10−21J
and kB = 1.3806× 10−23JK−1.

Quantity Reduced quantity Value (reduced) Value (real)

site mass m∗ = m/miα 1 2.66× 10−26kg
bond length d∗ = d/σ 1 3.817× 10−10m

temperature T ∗ = kT
ε

1 148K
box volume V ∗ = V

σ3 11905 6.620× 10−25m3

number density ρ∗ = ρσ3 0.84 1.510× 1028sites/m3

mass density ρ∗m = ρσ3/miα 0.84 402kg/m3

time-step t∗ =
(

ε
mCH4

σ2

) 1
2

t 0.004 5.53fs

strain rate γ̇ γ̇∗ =
(

ε
mCH4

σ2

)− 1
2

γ̇ 0.0022 (max.) 1.60× 109s−1

shear viscosity η∗s =
(

σ4

mCH4
ε

) 1
2

ηs

pressure p∗ = pσ3

ε

energy E∗ = E
ε

The parameter n1 defines polymer site fraction, the proportion of interaction
sites in the system which belong to polymer molecules, and is used henceforward
to describe the concentration of the systems. Table 2 lists the n1 values used in
this study and illustrates the relationship between this parameter and the mass
density of polymer molecules in the solutions.

The shear rates used in these simulations were γ̇ =0.0000, 0.0005, 0.00071,
0.0010, 0.0016 and 0.0022. MD simulations of polymer solutions usually use
shear rates of between γ̇ = 0.01 and γ̇ = 10 (see, for example, Refs. [18] and
[19]). The relatively low γ̇ values used here fall within the range of shear rates
accessible to current experiments [20].

The zero shear rate viscosity results shown in Table 2 were obtained via
linear extrapolation to γ̇2 = 0 (using, in this case, a weighted least squares fit)
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Figure 1: Zero shear viscosity, η, vs polymer concentration, n1, showing second-
order polynomial fit to all data points except n1 = 1.0.

of our ηs vs γ̇2 data (illustrated in Ref [4]). It is evident from these results that
zero shear rate viscosity (η) increases with increasing polymer concentration
(n1). This data is shown in Fig. 1, where it is fitted by a polynomial which
obeys the Huggins equation,

η = η0

(
1 + [η]n1 + kH [η]

2
+ ...

)
(7)

where the Huggins constant kH is 0.16 ± 0.4 and the intrinsic viscosity of the
polymer n this very good solvent is [η] = 4.0±0.4. This relationship is expected
to hold only for low concentration polymer solutions. However, our results show
a persistence of dilute-like behaviour over a much broader concentration range.

Table 2: Simulation Parameters and Viscosity Data: Total number of sites (Ns),
number of polymer molecules (Nm) and polymer site fraction (n1) alongside zero
shear rate first normal stress coefficient (Ψ1,0), zero shear rate viscosity (η) and
relaxation-time ratio (S2/S

2
1) results.

Ns Nm n1 Ψ1,0 × 10−2 η S2/S
2
1

10000 000 0.0 −0.3± 0.8 1.8± 0.1
10000 100 0.2 −0.6± 0.4 4.03± 0.7 −0.06± 0.03
10000 200 0.4 5.5± 0.9 5.60± 0.9 0.38± 0.09
10000 300 0.6 7.8± 0.7 8.2± 0.1 0.28± 0.04
10000 400 0.8 15.0± 0.8 11.3± 0.1 0.33± 0.03
10000 500 1.0 33± 2 16.0± 0.3 0.45± 0.05
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Our study of the conformation of this system [4] confirms this observation
in that the polymer molecules in the system exhibit a strong excluded volume
effect, up to a concentration greater than n1 = 0.4. For higher concentrations
this effect declines, but it is not until the n1 = 1.0 melt is reached that the
polymers in the system begin to display ideal Gaussian behaviour. The mean
field theory predicts that polymer solutions will exhibit an increasing degree of
excluded volume screening as polymer concentration is increased, with excluded
volume interactions being fully screened in concentrated solutions, whereas the
scaling theory predicts that full excluded volume screening and Gaussian be-
haviour should be seen at lower, semi-dilute concentrations [21]. Our results are
easily reconciled with these theoretical predictions, in terms of both viscosity
and conformation, if the system is regarded as persisting in an extended dilute
state up to relatively high concentrations (greater than n1 = 0.4), as a result of
both the shortness of the polymers and the good quality of the Lennard-Jones
solvent.

Figure 2: Logarithm of mean squared radius of gyration (R2
g) vs logarithm of

concentration (log(n1)).

These observations sit uncomfortably alongside the results of our examina-
tion of the scaling behaviour of the mean squared radius of gyration (R2

g), with

concentration (see Fig. 2). Mean field theory predicts a scaling exponent of − 1
2

between R2
g and n1, whereas scaling theory predicts an exponent of − 1

4 . While
there exist experimental studies of the conformational behaviour of long chain
polymers which conform to both of these predictions [22], our simulation results
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reveal a much more slight scaling relationship for our short polymers, varying
from − 1

20 to − 1
10 as concentration increases. This disagreement conflicts with

the theoretically compatible variation in the excluded volume effect, discussed
above, and implies that there is some failing in the predominant polymer solu-
tion theories, when applied to short-chain molecules.

Figure 3: Limiting first normal stress tensor Ψ0,1 vs 2η2. (Horizontal error bars
are smaller than plot symbols.)

As a further exploration of the behaviour of this system, the limiting values of
the first normal stress coefficient Ψ1,0 are examined at each concentration. These
values, listed in Table 2, are calculated as the gradients of weighted linear fits
to the shear-dependent N1 data (illustrated in Ref. [4]), which is linear over the
low-shear region simulated. Fig. 3 shows the value of Ψ1,0 at each concentration
plotted against 2η2, a multiple of the zero shear viscosity of each solution.
Relating equation 5 to this figure leads to the conclusion that the steady-state
shear compliance of the fluid remains constant at J0

e = Ψ1,0/2η
2 = 6.8 ± 0.3

and does not appreciably vary with concentration.
This contrasts with the behaviour of J0

eR, the reduced steady-state shear
compliance, which is regarded as being equivalent to S2/S

2
1 , the relaxation-time

ratio of the fluid. Combining equations 5 and 6 results in

J0
eR =

Ψ1,0n1RT

2M (η − η0)
2 =

S2

S2
1

. (8)

Here the ratio of relaxation times, S2/S
2
1 , represents the degree of hydrodynamic

interaction in the system. As noted in Section 2, Zimm theory predicts a value
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of S2/S
2
1 = 0.206 for low-concentration systems, whereas Rouse theory predicts

that S2/S
2
1 = 0.400, in the high concentration limit.

In Fig. 4, these values are plotted against n1 [η], where they are expected to
form a universal curve, independent of molecular weight. It is clear that, while
the result for the n1 = 0.2 system falls worryingly below the expected minimum
of 0.206, S2/S

2
1 values generally trend towards the Rouse prediction, for high

concentrations.

Figure 4: Ratio of relaxation times (S2/S
2
1) vs concentration (n1), showing

Rouse (S2/S
2
1 = 0.400) and Zimm (S2/S

2
1 = 0.206) values.

The change from Zimm-like to Rouse-like behaviour with increasing polymer
concentration signifies a transition from a hydrodynamically interacting regime
to a concentrated regime with full hydrodynamic screening. Evidently, both
hydrodynamic and static screening effects are apparent in the behaviour of this
system.

4 CONCLUSION

By examining the behaviour of N = 20 CWA polymer chains solvated by a
Lennard-Jones monatomic fluid, over the entire concentration range, we have
shown that a system of very short polymers in the steady-state at low shear can
exhibit significant deviation from the behaviour predicted by accepted theoret-
ical approaches.

As polymer concentration is increased, the system examined here shows a
clear trend from Zimm-like to Rouse-like behaviours, indicating that hydrody-
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namic screening is increasing according to expectations. Similarly, an increase in
static screening is apparent in the waning of the excluded volume effect observed
at high concentrations. The behaviour of this static screening is predicted by
the mean field and scaling theories, which regard this effect as the mechanism
behind changes in polymer conformation and make consequent predictions for
the scaling behaviour of R2

g.
The fact that for these short-chain polymers, screening behaviours are ob-

served while R2
g does not exhibit the expected scaling behaviour may indicate

that static screening does not act as the mechanism for changes in polymer
dimensions as current polymer theory suggests. Clearly, this analysis suggests
the existence of a theoretical disparity worthy of further examination.
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